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The structural properties and phase behavior of a self-avoiding polymer chain on an adhesive substrate,
subject to pulling at the chain end, are described by means of a grand canonical ensemble approach. We derive
analytical expressions for the probability distributions of the basic structural units of an adsorbed polymer, such
as loops, trains, and tails, in terms of the adhesive potential � and applied pulling force f . In contrast to
conventional, f =0, polymer adsorption, the chain detachment transition under pulling turns out to be of first
�rather than second� order, albeit it is dichotomic, i.e., no coexistence of different phase states exists. Also, the
hitherto controversial value of the critical adsorption exponent � is found to depend essentially on the degree
of interaction between different loops so that 0.34���0.59. The theoretical predictions are verified by means
of extensive Monte Carlo simulations.
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The manipulation of single polymer chains has turned re-
cently into an important method for understanding their me-
chanical properties and characterization of the intermolecular
interactions �1,2�, triggered essentially by the progress in
atomic force microscopy �AFM� �3� and by the development
of optical and magnetic tweezer techniques �4�. This rapid
development has been followed by theoretical consider-
ations, based on the mean-field approximation �5�, which
provide important insight into the mechanism of polymer
detachment from adhesive surfaces under an external pulling
force. A comprehensive study by Skvortsov et al. �6� exam-
ines the case of a Gaussian polymer chain. We also note here
the close analogy between the forced detachment of an ad-
sorbed chain and the unzipping of a double-stranded DNA
molecule. Recently, DNA denaturation and unzipping have
been treated by Kafri et al. �7� using the grand canonical
ensemble �GCE� approach �8,9� as well as Duplantier’s
analysis of polymer networks of arbitrary topology �10�. An
important result concerning the properties of adsorbed mac-
romolecules under pulling turns out to be the observation �7�
that the universal exponents �which govern polymer statis-
tics� undergo renormalization due to excluded volume ef-
fects, leading thus to a change of the order of the DNA
melting transition from second to first order. In this work we
use similar methods to describe the structure and detachment
of a single chain from a sticky substrate when the chain end
is pulled by an external force.

Starting with conventional �i.e., force-free� adsorption, we
recall that an adsorbed chain is build up from loops, trains,
and a free tail. One can treat these basic structural units
statistically by means of the GCE approach �8,9� where the
lengths of the buildings blocks are not fixed but may rather
fluctuate. The GCE partition function is then given by

��z� = �
N=0

�

�NzN =
V0�z�Q�z�

1 − V�z�U�z�
, �1�

where z is the fugacity and U�z�, V�z�, and Q�z� denote the
GCE partition functions of loops, trains, and tails, respec-
tively. The building block adjacent to the tethered chain end
is allowed for by V0�z�=1+V�z�. The partition function of

the loops is defined as U�z�=�n=1
� ��3z�n /n	, where �3 is the

three-dimensional connective constant and 	 is the exponent
that governs surface loop statistics. It is well known that for
an isolated loop 	=1−
11�1.39 �11�. We will argue below
that 	 changes value due to the excluded volume interaction
between a loop and the rest of the chain. The train GCE
partition function reads V�z�=�n=1

� ��3wz�n /n1−
d=2, whereby
one assumes that each adsorbed segment gains an additional
statistical weight w=exp��� with the dimensionless adsorp-
tion energy �=� /kBT. Finally, the GCE partition function for
the chain tail is defined by Q�z�=1+�n=1

� ��3z�n /n�. For an
isolated tail �=1−
1�0.32 �11�, but again the excluded vol-
ume interactions of a tail with the rest of the chain increase
the value of �. Using the generating function method �12�,
�N is obtained as �N= �z*�−N where the pole z* is given by
the condition V�z*�U�z*�=1 so that the free energy is F
=kBTN ln z* and the fraction of adsorbed monomers n
=−� ln z* /� ln w. In terms of the so called polylog function,
which is defined as �	 ,z�=�n=1

� zn /n	 �13�, the equation for
z* reads �
d=2=1.343 �11��

�	,�3z*��1 − 
d=2,�2wz*� = 1. �2�

A nontrivial solution for z* in terms of w �or the adsorption
energy �� appears at the critical adsorption point �CAP� w
=wc where wc is determined from ��	��1−
d=2 ,
�2wc /�3�=1 and ��	� is the Riemann function. In the vicin-
ity of the CAP the solution attains the form

z*�w� � �1 − A�w − wc�1/�	−1���3
−1, �3�

where A is a constant. Then the average fraction of adsorbed
monomers is n� ��−�c�1/�	−1�−1. A comparison with the well-
known scaling relationship n� ��−�c�1/�−1 where � is the
so-called adsorption �or crossover� exponent �11� suggests
that

� = 	 − 1. �4�

This result, derived first by Birshtein �9�, is of principal im-
portance. It shows that the exponent �, which describes
polymer adsorption at criticality, is determined by 	, which
governs the polymer loop statistics. If loops are treated as
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isolated objects, then 	=1−
11�1.39 so that �=0.39. In
contrast, excluded volume interactions between a loop and
the rest of the chain lead to an increase of 	 and �, as shown
below.

From the expression for U�z�, given above, and Eq. �3�,
we have Ploop���3z*�l / l1+��exp�−c1��−�c�1/�� / l1+�. This
is valid only for ���c since a solution for Eq. �2� for sub-
critical values of the adhesive potential � does not exist.
Nontheless, even in the subcritical region, ���c, there are
still monomers that occasionally touch the substrate, creating
thus single loops at the expense of the tail length. The parti-
tion function of such a loop-tail configuration is Zl−t
= ��3

l / l1+���3
N−l / �N− l��. On the other hand, the partition

function of a tail conformation with no loops whatsoever
�i.e., of a nonadsorbed tethered chain� is Zt=�3

NN
1−1. Thus
the probability Ploop

� �l� to find a loop of length l next to a tail
of length N− l can be estimated as Ploop

� �l�=Zl−t /Zt
�N1−
1 / l1+��N− l�� at ���c. In the vicinity of the CAP, �
��c, the distribution will be given by an interpolation be-
tween the expressions above. Hence, the overall loop distri-
bution becomes

Ploop�l� =�
1

l1+� exp�− c1�� − �c�1/�l� , � � �c,

A1

l1+� +
A2N1−
1

l1+��N − l�� , � = �c,

N1−
1

l1+��N − l�� , � � �c.
� �5�

The same reasoning for a tail leads to the distribution

Ptail�l� =�
1

l� exp�− c1�� − �c�1/�l� , � � �c,

B1

l� +
B2N1−
1

l��N − l�1+� , � = �c,

N1−
1

l��N − l�1+� , � � �c.
� �6�

In Eqs. �5� and �6�, A1, A2, B1, and B2 are constants. Close to
the CAP, these distributions are expected to attain a
U-shaped form �with two maxima at l=1 and l�N�, as pre-
dicted for a Gaussian chain by Gorbunov et al. �14�. For the
average loop length L the GCE partition function for loops
yields L= 	z�U�z� /�z	z=z*=�	−1,�3z*� /�	 ,�3z*�. At the
CAP, L diverges as L�1 / ��−�c�1/�−1. The average tail length
S is obtained as S= 	z�Q�z� /�z	z=z*=��−1,�3z*� / �1
+�� ,�3z*��. Again, using the polylog function, one can
show that at �c the average tail length diverges as S�1 /
��−�c�1/�.

Consider the number of configurations of a tethered chain
in the vicinity of the CAP as an array of loops which end up
with a tail. Using the approach of Kafri et al. �7� along with
Duplantier’s �10� graph theory of polymer networks, one
may write the partition function Z for a chain with N build-
ing blocks: N−1 loops and a tail. Consider a loop of length
M while the length of the rest of the chain is K, that is, M
+K=N. In the limit of M �1, K�1 �but with M /K�1�, one

can show �15� that Z
�3
MM
N

s −
N−1
s

�3
KK
N−1

s −1 where the sur-
face exponent 
N

s =2−N��+1�+�1+�1
s and �1 and �1

s are
critical bulk and surface exponents �10�. The last result indi-
cates that the effective loop exponent 	 becomes

	 = 
N−1
s − 
N

s = � + 1. �7�

Thus, �=	−1=�=0.588, in agreement with earlier Monte
Carlo findings �16�. One should emphasize, however, that the
foregoing derivation is mean-field-like �Z appears as a prod-
uct of loop and rest-of-the-chain contributions�, which over-
estimates the interactions and increases significantly the
value of 	, serving as an upper bound. The value of 	, there-
fore, is found to satisfy the inequality 1−
11�	�1+�, i.e.,
it depends on loop interactions, 0.39���0.59.

Using the GCE approach, we treat now the case of self-
avoiding polymer chain adsorption in the presence of a pull-
ing force, thus extending the consideration of Gaussian
chains by Gorbunov et al. �17�. Under a pulling force f , the
tail GCE partition function Q�z� in Eq. �1� has to be replaced

by Q̃�z�=1+�n=1
� ���3z�n /n���d3r Pn�r�exp�fr� /T� where

Pn�r� is the end-to-end distance distribution function for a
self-avoiding chain �18�. After some straightforward calcula-

tions, Q̃�z� can be written as

Q̃�z� = 1 + a1 f̃�„�,z�3 exp�a2 f̃1/��… . �8�

Here the dimensionless force f̃ = fa /kBT, and the exponents
�=1−� and �= �2+ t−3� /2� / ��−1� with t= ��−3 /2

+3�� / �1−�� and �=1 / �1−��. The function Q̃�z� has a

branch point at z#=�3
−1 exp�−a2 f̃1/��, i.e., Q̃�z�
1 / �z#

−z�1−�. One may, therefore, conclude that the total GCE par-
tition function ��z� has two singularities on the real axis: the
pole z*, and the branch point z#. It is known �see, e.g., Sec.
2.4.3. in �12�� that for N�1 the main contributions to �N
come from the pole and the branch singular points, i.e.,

�N 
 C1�z*�−N +
C2

��1 − ��
N−��z#�−N. �9�

Thus, for large N, only the smallest of these points matters.
On the other hand, z* depends on the dimensionless adsorp-
tion energy � only �i.e., on w=exp���� whereas z# is con-

trolled by the external force f̃ . Therefore, in terms of the two

control parameters � and f̃ , the equation z*���=z#� f̃� defines
the critical transition line between the adsorbed phase and
the force-induced desorbed phase. In the following this line
will be called the detachment line �DL�. Below it, f � fD, or
above it, f � fD, either z* or z#, respectively, contributes to

�N. The control parameters �D and f̃D that satisfy this equa-
tion denote the detachment energy and detachment force,
respectively. On the DL the system undergoes a first-order

phase transition. The DL itself terminates for f̃D→0 in the
CAP, �c, where the transition becomes of second order. In the

vicinity of the CAP the detachment force f̃D vanishes as f̃D

��−�c��/�. This first-order adsorption-desorption phase
transition under pulling has a clear dichotomic nature �i.e., it
follows an “either-or” scenario�: in the thermodynamic limit
N→� there is no phase coexistence. The configurations are
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divided into adsorbed and desorbed dichotomic classes.
Metastable states are completely absent. Moreover, the mean
loop length L remains finite upon crossing the DL. In con-
trast, the average tail length S diverges close to the DL.

Indeed, at f̃ � f̃D the average tail length is given by S

= f̃�(�−1,z*�w� /z#� f̃�) / �1+a1(� ,z*�w� /z#� f̃�)�. At the

DL, z*=z#, it diverges as S� f̃D / � f̃D− f̃�.
Recently, it has been realized �19� that the DL, when rep-

resented in terms of dimensional variables, force fD versus
temperature T, goes �at a relatively low temperature� through
a maximum, i.e., the desorption transition shows reentrant
behavior. Such behavior was predicted earlier �20–22� in a
different context, namely, of DNA unzipping, and also in the
coil-hairpin transition �23�. Below we demonstrate that this
result follows directly from our theory. Indeed, the solution
of Eq. �2� at large values of � �or at low temperature� can be
written as z*�e−� /�3 so that the DL, z*=z#, in terms of

dimensionless parameters is monotonic, f̃D� ��D
−ln��3 /�2���. Note, however, that the same DL, if repre-
sented in terms of the dimensional control parameters, force
fD versus temperature TD �with a fixed dimensional energy
�0�, shows a nonmonotonic behavior fD=TD��0 /TD
−ln��3 /�2��� /a, as found earlier for DNA unzipping �20�.
This curve has a maximum at a temperature given by TD

max

= �1−���0 / ln��3 /�2�. At very low T, however, the expres-
sion for Pn�r� �18� predicts divergent chain deformation �20�,
i.e., it becomes unphysical. One can readily show that in this
case the correct behavior is given by fa=�0+T ln��3 /�2�.

We have investigated the force-induced desorption of a
polymer by means of extensive Monte Carlo �MC� simula-
tions using a coarse-grained off-lattice bead-spring model
�24� of a polymer. Figure 1�a� shows the variation of the
order parameter n �average fraction of adsorbed monomers�
with changing adhesive potential � at fixed pulling force,
whereas Fig. 1�b� depicts n vs force fa /T for various �. The
abrupt change of the order parameter is in close agreement
with our theoretical prediction. Using the values of fD and �D
at the DL in the thermodynamic limit N→�, one can con-
struct an adsorption-desorption phase diagram for a polymer
chain under pulling, Fig. 2, which is among the central re-
sults of this work. The detachment lines obtained from MC
data and the numerical representation of z*=z# almost coin-
cide, and the slope of fD vs ��−�c� is close to unity, accord-
ing to the prediction fD� ��−�c��/�. Also indicated by the
shaded area in Fig. 2 is the reentrant image of the same phase
diagram, obtained when the numerical solution of Eq. �2� is
plotted in dimensional units of f versus T. In Fig. 3�a� we
show the probability distribution function of tail lengths at
different strengths of adsorption in the absence of pulling.
This confirms the U shape of P�s� predicted by Eq. �6�.
While for s→1 the agreement with Eq. �6� is perfect, for s
→N the long tails are slightly overestimated by Eq. �6�. This
small discrepancy reflects the dominance of our single loop
and tail approximation—multiple loops would effectively re-
duce the tail size. Figure 3�b� shows the divergency of S
close to the critical point �c. For a chain of finite length N,
the tail length divergence at �→�c is replaced by a rounding
into a plateau since S→N but away from �c the measured
slope extrapolates to the theoretical prediction S�1 / ��
−�c�1/�. In the presence of a pulling force one observes a
remarkable feature of the order parameter probability
distribution—the absence of two peaks in the vicinity of the
critical strength of adsorption, �D�6.095�0.03, which still
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FIG. 1. �Color online� �a� Order parameter n against the surface
potential � for various pulling forces. The chain has length N
=128. �b� n vs f for several surface potentials �.
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FIG. 2. �Color online� Critical detachment force fD= fa /kBT
against the surface potential � /kBT. Full and empty symbols denote
MC and theoretical results. A double logarithmic plot of fD against
�−�c with �c=1.67 is shown in the inset, yielding a slope of
0.97�0.02, in agreement with the prediction fD� ��−�c��/�. The
shaded area shows the same phase diagram as derived by numeric
solution of Eq. �2�; in dimensional f �right axis� against T �top axis�
units this appears reentrant.
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keeps the polymer adsorbed at pulling force fa /kBT=6.0
�Fig. 4�. At �D the distribution H�n� is flat, indicating huge
fluctuations so that any value of n is equally probable. Close
to �D, one observes a clear maximum in H�n�, indicating a
desorbed chain with n�0.01 for �=6.05, or a completely
adsorbed chain with n�0.99 for �=6.15. This lack of bimo-
dality in H�n� manifests the dichotomic nature of the desorp-

tion transition, which rules out phase coexistence.
In conclusion, we have shown that the force-induced de-

sorption of a self-avoiding polymer chain can be properly
described by means of the GCE approach, yielding the aver-
age size and probability distribution functions of all basic
structural units as well as their variation with changing force
or strength of adhesion. The detachment transition is proved
to be of first order, albeit dichotomic in nature, thus ruling
out phase coexistence. The critical line of desorption, while
monotonic when plotted in dimensionless units of detach-
ment force against surface potential, becomes reentrant in
units of force against temperature. In addition, we show that
the crossover exponent � governing polymer behavior at
criticality depends essentially on interactions between differ-
ent loops so that 0.39���0.59. All these predictions ap-
pear in good agreement with our MC simulation results.
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FIG. 3. �Color online� �a� Tail length distribution P�s� for dif-
ferent surface potentials close to �c in a polymer of length N=128
with no pulling force. In the inset P�s� at �=�c �symbols� is com-
pared to the prediction Eq. �6� �full line�. �b� Average tail length S
against ��−�c� /kBT plotted for various chain lengths in log-log co-
ordinates. In the inset the slopes of these curves extrapolate for
1 /N→0 to 1 /� �thermodynamic limit�.
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FIG. 4. �Color online� Order parameter distribution for pulling
force fa /kBT=6.0 and different adhesion strengths � /kBT. Here N
=128 and the threshold value of the surface potential for this force
is �D�6.095�0.03. The values � /kBT=6.09 and 6.10 are on each
side of the DL.
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